“…This article introduces an R package for performing joint analysis on large-scale multiblock data from multiple sources. The core algorithms of this package have their roots in traditional simultaneous component analysis (SCA), which has been widely used for performing data integration from multiple sources in biomedical research, bioinformatics, genomics, and psychology (e.g., De Tayrac, Lê, Aubry, Mosser, & Husson, 2009; Gu & Van Deun, 2016; Lock, Hoadley, Marron, & Nobel, 2013; Van Deun, Smilde, van der Werf, Kiers, & Van Mechelen, 2009; Van Deun et al, 2012: Van Deun, Smilde, Thorrez, Kiers, & Van Mechelen, 2013; Wilderjans, Ceulemans, Van Mechelen, & van den Berg, 2011). One may notice that, aside from SCA, other methods, such as canonical correlation analysis (Tenenhaus & Tenenhaus, 2014), may also be used for joint analysis of multiblock data, but we refrain from discussing other methods in this article.…”