Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Headwater wetlands are important sites for carbon storage and emissions. While local- and landscape-scale factors are known to influence wetland carbon biogeochemistry, the spatial and temporal heterogeneity of these factors limits our predictive understanding of wetland carbon dynamics. To address this issue, we examined relationships between carbon dioxide (CO2) and methane (CH4) concentrations with wetland hydrogeomorphology, water level, and biogeochemical conditions. We sampled water chemistry and dissolved gases (CO2 and CH4) and monitored continuous water level at 20 wetlands and co-located upland wells in the Delmarva Peninsula, Maryland, every 1–3 months for 2 years. We also obtained wetland hydrogeomorphologic metrics at maximum inundation (area, perimeter, and volume). Wetlands in our study were supersaturated with CO2 (mean = 315 μM) and CH4 (mean = 15 μM), highlighting their potential role as carbon sources to the atmosphere. Spatial and temporal variability in CO2 and CH4 concentrations was high, particularly for CH4, and both gases were more spatially variable than temporally. We found that groundwater is a potential source of CO2 in wetlands and CO2 decreases with increased water level. In contrast, CH4 concentrations appear to be related to substrate and nutrient availability and to drying patterns over a longer temporal scale. At the landscape scale, wetlands with higher perimeter:area ratios and wetlands with higher height above the nearest drainage had higher CO2 and CH4 concentrations. Understanding the variability of CO2 and CH4 in wetlands, and how these might change with changing environmental conditions and across different wetland types, is critical to understanding the current and future role of wetlands in the global carbon cycle.
Headwater wetlands are important sites for carbon storage and emissions. While local- and landscape-scale factors are known to influence wetland carbon biogeochemistry, the spatial and temporal heterogeneity of these factors limits our predictive understanding of wetland carbon dynamics. To address this issue, we examined relationships between carbon dioxide (CO2) and methane (CH4) concentrations with wetland hydrogeomorphology, water level, and biogeochemical conditions. We sampled water chemistry and dissolved gases (CO2 and CH4) and monitored continuous water level at 20 wetlands and co-located upland wells in the Delmarva Peninsula, Maryland, every 1–3 months for 2 years. We also obtained wetland hydrogeomorphologic metrics at maximum inundation (area, perimeter, and volume). Wetlands in our study were supersaturated with CO2 (mean = 315 μM) and CH4 (mean = 15 μM), highlighting their potential role as carbon sources to the atmosphere. Spatial and temporal variability in CO2 and CH4 concentrations was high, particularly for CH4, and both gases were more spatially variable than temporally. We found that groundwater is a potential source of CO2 in wetlands and CO2 decreases with increased water level. In contrast, CH4 concentrations appear to be related to substrate and nutrient availability and to drying patterns over a longer temporal scale. At the landscape scale, wetlands with higher perimeter:area ratios and wetlands with higher height above the nearest drainage had higher CO2 and CH4 concentrations. Understanding the variability of CO2 and CH4 in wetlands, and how these might change with changing environmental conditions and across different wetland types, is critical to understanding the current and future role of wetlands in the global carbon cycle.
The first discovery of methanogens led to the formation of a new domain of life known as Archaea. The Archaea domain exhibits properties vastly different from previously known Bacteria and Eucarya domains. However, for a certain multi-step process, a syntrophic relationship between organisms from all domains is needed. This process is called methanogenesis and is defined as the biological production of methane. Different methanogenic pathways prevail depending on substrate availability and the employed order of methanogenic Archaea. Most methanogens reduce carbon dioxide to methane with hydrogen through a hydrogenotrophic pathway. For hydrogen activation, a group of enzymes called hydrogenases is required. Regardless of the methanogenic pathway, electrons are carried between microorganisms by hydrogen. Naturally occurring processes, such as methanogenesis, can be engineered for industrial use. With the growth and emergence of new industries, the amount of produced industrial waste is an ever-growing environmental problem. For successful wastewater remediation, a syntrophic correlation between various microorganisms is needed. The composition of microorganisms depends on wastewater type, organic loading rates, anaerobic reactor design, pH, and temperature. The last step of anaerobic wastewater treatment is production of biomethane by methanogenesis, which is thought to be a cost-effective means of energy production for this renewable biogas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.