We investigated the fusion of high-speed liquid droplets as a way to record the kinetics of liquid-phase chemical reactions on the order of microseconds. Two streams of micrometer-size droplets collide with one another. The droplets that fused (13 μm in diameter) at the intersection of the two streams entered the heated capillary inlet of a mass spectrometer. The mass spectrum was recorded as a function of the distance x between the mass spectrometer inlet and the droplet fusion center. Fused droplet trajectories were imaged with a high-speed camera, revealing that the droplet fusion occurred approximately within a 500-μm radius from the droplet fusion center and both the size and the speed of the fused droplets remained relatively constant as they traveled from the droplet fusion center to the mass spectrometer inlet. Evidence is presented that the reaction effectively stops upon entering the heated inlet of the mass spectrometer. Thus, the reaction time was proportional to x and could be measured and manipulated by controlling the distance x. Kinetic studies were carried out in fused water droplets for acid-induced unfolding of cytochrome c and hydrogen-deuterium exchange in bradykinin. The kinetics of the former revealed the slowing of the unfolding rates at the early stage of the reaction within 50 μs. The hydrogendeuterium exchange revealed the existence of two distinct populations with fast and slow exchange rates. These studies demonstrated the power of this technique to detect reaction intermediates in fused liquid droplets with microsecond temporal resolution.mass spectrometry | liquid microdroplets | reaction kinetics | protein unfolding | hydrogen-deuterium isotope exchange T ime-resolved measurements of reaction intermediates are crucial for understanding the fast kinetics of chemical reactions. Various approaches have been implemented to improve the temporal resolution of kinetic measurements in liquid reactions (1, 2), which are often limited by the mixing time. One approach for improving the mixing time involves the use of turbulent flow to increase the shear stress in fluid channels (3). Another approach is to stimulate the rapid initiation of a reaction by photo-triggered initiation (4), electron transfer (5), or temperature jump/rise (6). A small-size reactor was also used for rapid mixing so that the time required for diffusion-dependent mixing is minimized (7-10).Among various methods for detecting reaction intermediates, mass spectrometry has been a powerful tool for probing reaction products because it can discriminate similar species by their mass-to-charge ratio while simultaneously measuring multiple species. Time-resolved mass spectrometry (11) has been widely used for measuring the kinetics of protein-ligand complexation, organometallic compound formation, and enzyme-catalyzed processes. Despite these efforts for improving temporal resolution, time-resolved mass spectrometry has been limited to the millisecond timescale, with a recent achievement of 300 μs (12).A major obstacle for imp...