Towards virtual keyboard design and realization, the work in this paper presents a robust key input method for deployment in virtual keyboard systems. The proposed scheme harnesses the information contained within shadows towards robustifying virtual key input. This scheme allows for input efficiency to be guaranteed in situations of relatively lower illumination, a core challenge associated with virtual keyboards. Contributions of the paper are twofold. Firstly the paper presents an approach towards effectively applying shadow information towards robustifying virtual key input systems; Secondly, through morphological operations, the performance of this input method is boosted by means of effectively alleviating noise and its impacts on overall algorithm performance, while highlighting the necessary features towards an efficient performance. While previous contributions have followed a similar trend, the contribution of this paper stresses on the intensification and improvement of both shadow and fingertip feature highlighting schemes towards overall performance improvement. Experimental results presented in the paper demonstrate the efficiency and robustness of the approach. The attained results suggest that the scheme is capable of attaining high performances in terms of accuracy while being capable of addressing false touch situations.