Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In many cases, images contain sensitive information and patterns that require secure processing to avoid risk. It can be accessed by unauthorized users who can illegally exploit them to threaten the safety of people’s life and property. Protecting the privacies of the images has quickly become one of the biggest obstacles that prevent further exploration of image data. In this paper, we propose a novel privacy-preserving scheme to protect sensitive information within images. The proposed approach combines deoxyribonucleic acid (DNA) sequencing code, Arnold transformation (AT), and a chaotic dynamical system to construct an initial S-box. Various tests have been conducted to validate the randomness of this newly constructed S-box. These tests include National Institute of Standards and Technology (NIST) analysis, histogram analysis (HA), nonlinearity analysis (NL), strict avalanche criterion (SAC), bit independence criterion (BIC), bit independence criterion strict avalanche criterion (BIC-SAC), bit independence criterion nonlinearity (BIC-NL), equiprobable input/output XOR distribution, and linear approximation probability (LP). The proposed scheme possesses higher security wit NL = 103.75, SAC ≈ 0.5 and LP = 0.1560. Other tests such as BIC-SAC and BIC-NL calculated values are 0.4960 and 112.35, respectively. The results show that the proposed scheme has a strong ability to resist many attacks. Furthermore, the achieved results are compared to existing state-of-the-art methods. The comparison results further demonstrate the effectiveness of the proposed algorithm.
In many cases, images contain sensitive information and patterns that require secure processing to avoid risk. It can be accessed by unauthorized users who can illegally exploit them to threaten the safety of people’s life and property. Protecting the privacies of the images has quickly become one of the biggest obstacles that prevent further exploration of image data. In this paper, we propose a novel privacy-preserving scheme to protect sensitive information within images. The proposed approach combines deoxyribonucleic acid (DNA) sequencing code, Arnold transformation (AT), and a chaotic dynamical system to construct an initial S-box. Various tests have been conducted to validate the randomness of this newly constructed S-box. These tests include National Institute of Standards and Technology (NIST) analysis, histogram analysis (HA), nonlinearity analysis (NL), strict avalanche criterion (SAC), bit independence criterion (BIC), bit independence criterion strict avalanche criterion (BIC-SAC), bit independence criterion nonlinearity (BIC-NL), equiprobable input/output XOR distribution, and linear approximation probability (LP). The proposed scheme possesses higher security wit NL = 103.75, SAC ≈ 0.5 and LP = 0.1560. Other tests such as BIC-SAC and BIC-NL calculated values are 0.4960 and 112.35, respectively. The results show that the proposed scheme has a strong ability to resist many attacks. Furthermore, the achieved results are compared to existing state-of-the-art methods. The comparison results further demonstrate the effectiveness of the proposed algorithm.
With an immense increase in Internet multimedia applications over the past few years, digital content such as digital images are stored and shared over global networks, the probability for information leakage and illegal modifications to the digital content is at high risk. These digital images are transferred using the network bandwidth; therefore, secure encryption schemes facilitate both information security and bandwidth issues. Hence, a state-of-the-art lightweight information security methodology is required to address this challenge. The main objective of this work is to develop a lightweight nonlinear mechanism for digital image security using chaos theory. The proposed scheme starts by changing a plain image into an encrypted image to improve its security. A block cipher, using lightweight chaos, has been added to achieve this objective for digital image security. We utilized multiple chaotic maps to generate random keys for each channel. Also, Arnold cat map and chaotic gingerbread map are used to add confusion and diffusion. During the permutation stage, image pixels are permuted, while in diffusion stage, pixels are distorted utilizing gingerbread map to add more security. The proposed scheme has been validated using different security parameter tests such as correlation coefficient tests (CC), whose results have been observed closer to zero and information entropy (IE) value is 7.99, respectively, which is almost equal to the ideal value of 8. Moreover, number of pixels changing rate (NPCR) obtained value is higher than 99.50%, while the unified average changing intensity (UACI) is 33.33. Other parameters such as mean absolute error (MAE), mean square error (MSE), lower value of peak to signal noise ratio (PSNR), structural content (SC), maximum difference (MD), average difference (AD), normalized cross-correlation (NCC), and histogram analysis (HA) is tested. The computed values of the proposed scheme are better. The achieved results after comparison with existing schemes highlight that the proposed scheme is highly secure, lightweight, and feasible for real-time communications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.