In this paper, we introduce a generalized viscosity explicit method (GVEM) for nonexpansive mappings in the setting of Banach spaces and, under some new techniques and mild assumptions on the control conditions, prove some strong convergence theorems for the proposed method, which converge to a fixed point of the given mapping and a solution of the variational inequality. As applications, we apply our main results to show the existence of fixed points of strict pseudo-contractions and periodic solutions of nonlinear evolution equations and Fredholm integral equations. Finally, we give some numerical examples to illustrate the efficiency and implementation of our method.