We modify the three-step iterative schemes to prove the strong convergence theorems by using the hybrid projection methods for finding a common element of the set of solutions of fixed points for a pseudocontractive mapping and a nonexpansive semigroup mapping and the set of solutions of a variational inequality problem for a monotone mapping in a Hilbert space under some appropriate control conditions. Our theorems extend and unify most of the results that have been proved for this class of nonlinear mappings.