2017
DOI: 10.1007/s13369-017-2917-0
|View full text |Cite
|
Sign up to set email alerts
|

A Vision-Based Real-Time Mobile Robot Controller Design Based on Gaussian Function for Indoor Environment

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
28
0
2

Year Published

2019
2019
2023
2023

Publication Types

Select...
8
2

Relationship

2
8

Authors

Journals

citations
Cited by 32 publications
(30 citation statements)
references
References 30 publications
0
28
0
2
Order By: Relevance
“…After mapping the environment, the cognitivebased adaptive optimization (CAO) approach was used for the next optimum motion. Dönmez et al [15] proposed a Gaussian controller method that would allow the robot to be advanced from an initial position to the target position by determining the least costly path between the starting and target position on the images obtained from a camera mounted on the ceiling. Tuncer and Yildirim also [16] proposed a whole system for mobile robots including a vision-based path planning system using a camera mounted to the ceiling for locating the robot and obstacles.…”
Section: Literature Reviewmentioning
confidence: 99%
“…After mapping the environment, the cognitivebased adaptive optimization (CAO) approach was used for the next optimum motion. Dönmez et al [15] proposed a Gaussian controller method that would allow the robot to be advanced from an initial position to the target position by determining the least costly path between the starting and target position on the images obtained from a camera mounted on the ceiling. Tuncer and Yildirim also [16] proposed a whole system for mobile robots including a vision-based path planning system using a camera mounted to the ceiling for locating the robot and obstacles.…”
Section: Literature Reviewmentioning
confidence: 99%
“…This algorithm is completed using two trees that start to separate from both the starting and the target positions. Visual-servoing (VS) methods have been widely used in various path planning applications [32][33][34][35][36][37] and use an image sensor in a feedback loop for trajectory control. Global path planning provides a global map in which the robot initial position, goal point, and obstacle positions are determined.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Kocamaz ve diğerleri [20], farklı kombinasyon ve sayıdaki pinpon topu dizilimleri ve farklı mobil robot konumlamalarını tepe kamera ile görüntüleyerek, görüntü örnekleri elde etmiş, mobil robotun gezinme sırasında tüm topları en kısa yolu tercih ederek en optimum mesafeyi gezerek tüm topları toplayabilmesi için gezgin satıcı problemi için NN-GSP algoritması kullanmıştır. Dönmez ve diğerleri [21], tepe kameralardan elde edilen görüntüler üzerinde başlangıç ve hedef konum arasındaki en az maliyetli yol tespiti yaparak, robotun bir başlangıç konumundan hedef konuma ilerletilmesini sağlayacak Gaussian kontrolör yöntemi önermişleridir. Dönmez ve Kocamaz [21] çoklu robotlarda hedef dağlımı üzerine bir yaklaşımı bildirmişlerdir.…”
Section: İlişkili çAlışmalarunclassified