Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The early and highly accurate prediction of COVID-19 based on medical images can speed up the diagnostic process and thereby mitigate disease spread; therefore, developing AI-based models is an inevitable endeavor. The presented work, to our knowledge, is the first to expand the model space and identify a better performing model among 10,000 constructed deep transfer learning (DTL) models as follows. First, we downloaded and processed 4481 CT and X-ray images pertaining to COVID-19 and non-COVID-19 patients, obtained from the Kaggle repository. Second, we provide processed images as inputs to four pre-trained deep learning models (ConvNeXt, EfficientNetV2, DenseNet121, and ResNet34) on more than a million images from the ImageNet database, in which we froze the convolutional and pooling layers pertaining to the feature extraction part while unfreezing and training the densely connected classifier with the Adam optimizer. Third, we generate and take a majority vote of two, three, and four combinations from the four DTL models, resulting in DTL models. Then, we combine the 11 DTL models, followed by consecutively generating and taking the majority vote of DTL models. Finally, we select DTL models from Experimental results from the whole datasets using five-fold cross-validation demonstrate that the best generated DTL model, named HC, achieving the best AUC of 0.909 when applied to the CT dataset, while ConvNeXt yielded a higher marginal AUC of 0.933 compared to 0.93 for HX when considering the X-ray dataset. These promising results set the foundation for promoting the large generation of models (LGM) in AI. Supplementary Information The online version contains supplementary material available at 10.1038/s41598-024-76498-4.
The early and highly accurate prediction of COVID-19 based on medical images can speed up the diagnostic process and thereby mitigate disease spread; therefore, developing AI-based models is an inevitable endeavor. The presented work, to our knowledge, is the first to expand the model space and identify a better performing model among 10,000 constructed deep transfer learning (DTL) models as follows. First, we downloaded and processed 4481 CT and X-ray images pertaining to COVID-19 and non-COVID-19 patients, obtained from the Kaggle repository. Second, we provide processed images as inputs to four pre-trained deep learning models (ConvNeXt, EfficientNetV2, DenseNet121, and ResNet34) on more than a million images from the ImageNet database, in which we froze the convolutional and pooling layers pertaining to the feature extraction part while unfreezing and training the densely connected classifier with the Adam optimizer. Third, we generate and take a majority vote of two, three, and four combinations from the four DTL models, resulting in DTL models. Then, we combine the 11 DTL models, followed by consecutively generating and taking the majority vote of DTL models. Finally, we select DTL models from Experimental results from the whole datasets using five-fold cross-validation demonstrate that the best generated DTL model, named HC, achieving the best AUC of 0.909 when applied to the CT dataset, while ConvNeXt yielded a higher marginal AUC of 0.933 compared to 0.93 for HX when considering the X-ray dataset. These promising results set the foundation for promoting the large generation of models (LGM) in AI. Supplementary Information The online version contains supplementary material available at 10.1038/s41598-024-76498-4.
This research investigates advanced approaches in medical image analysis, specifically focusing on segmentation and classification techniques, as well as their integration into multi‐task architectures for lung infections. This research begins by explaining key architectural models used in segmentation and classification tasks. The study extends to the enhancement of these architectures through attention modules and conditional random fields. Relevant datasets and evaluation metrics, incorporating discussions on loss functions are also reviewed. This review encompasses recent advancements in single‐task and multi‐task models, highlighting innovations in semi‐supervised, self‐supervised, few‐shot, and zero‐shot learning techniques. Empirical analysis is conducted on both single‐task and multi‐task architectures, predominantly utilizing the U‐Net framework, and is applied across multiple datasets for segmentation and classification tasks. Results demonstrate the effectiveness of these models and provide insights into the strengths and limitations of different approaches. This research contributes to improved detection and diagnosis of lung infections by offering a comprehensive overview of current methodologies and their practical applications.
Early and accurate prediction of COVID-19 based on medical images can speed up the diagnostic process and thereby mitigating the disease spread. Hence, developing AI-based models is an inevitable endeavor. The presented work, to our knowledge, is considered the largest empirical COVID-19 classification study using CT and X-ray in which we propose a novel computational framework constructing 10000 deep transfer learning (DTL) models as follows. First, we downloaded and processed 4481 CT and X-ray images pertaining to COVID-19 and non-COVID-19 patients, obtained from the Kaggle repository. Second, we provide processed images as input to four pre-trained deep learning models on more than million images from ImageNet database in which we froze the convolutional and pooling layers pertaining to the feature extraction part while unfroze and train the densely connected classifier with Adam optimizer. Third, we generate and take majority vote of 2, 3, and 4-combinations from the 4 DTL models, resulted inmodels. Then, we combine the 11 DTL models, followed by consecutively generating and taking the majority vote ofDTL models. Finally, we select 7953 DTL models from. Experimental results on the whole datasets using five-fold cross-validation demonstrate that best generated DTL model, named HC, achieving the best AUC of 0.909 when applied to the CT dataset while ConvNeXt yielded a higher marginal AUC of 0.933 compared to 0.93 for HX when considering the X-ray dataset. These promising results set the foundation for promoting large generation of models (LGM) in AI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.