The hydraulic conductivity plays a major role on the excess pore pressure generation during monotonic and cyclic loading of granular soils with fines. This paper aims to determine how much the hydraulic conductivity and pore pressure response of the sand-silt mixtures are affected by the percentage of fines and void ratio of the soil. The results of flexible wall permeameter and undrained monotonic triaxial tests performed on samples reconstituted from Chlef River sand with 0, 10, 20, 30, 40, and 50% nonplastic silt at an effective confining stress of 100 kPa and two relative densities (D r ¼ 20, and 91%) are presented and discussed. It was found that the pore pressure increases linearly with the increase of the fines content and logarithmically with the increase of the intergranular void ratio. The results obtained from this study reveal that the saturated hydraulic conductivity (k) of the sand mixed with 50% low plastic fines can be, on average, four orders of magnitude smaller than that of the clean sand. The results show also that the hydraulic conductivity decreases hyperbolically with the increase of the fines content and the intergranular void ratio.