The paper presents a novel twofold use of the photographic technique for flow boiling heat transfer investigation in the horizontal mini-channel. The dedicated measurement system was constructed to record basic thermal and flow parameters, i.e., boiling liquid inlet and outlet temperatures and pressures, and also temperatures inside the heating block to calculate heat flux going into the liquid. A high-speed video camera equipped with synchronous movement system was applied to combine the recording of two-phase flow images with simultaneous local void fraction measurements both based on the same photographic data set. The data were collected, managed, and refined with the scripts developed in the MathWorks Matlab 2019b environment. The synchronous use of two intelligent techniques in the scripts, i.e., the background subtraction technique and the statistical analysis of individual pictures allowed obtaining reliable experimental results. The proposed method of the void fraction determination ensures high measurement accuracy.