The end of Dennard scaling has caused a stagnation of the clock frequency in computers.To overcome this issue, in the last two decades vendors have been integrating larger numbers of processing elements in the systems, interconnecting many nodes, including multiple chips in the nodes and increasing the number of cores in each chip. The speed of main memory has not evolved at the same rate as processors, it is much slower and there is a need to provide more total bandwidth to the processors, especially with the increase in the number of cores and chips.
Still keeping a shared address space, where all processors can access the whole memory, solutions have come by integrating more memories: by using newer technologies like high-bandwidth memories (HBM) and non-volatile memories (NVM), by giving groups cores (like sockets, for example) faster access to some subset of the DRAM, or by combining many of these solutions. This has caused some heterogeneity in the access speed to main memory, depending on the CPU requesting access to a memory address and the actual physical location of that address, causing non-uniform memory access (NUMA) behaviours.
Moreover, many of these systems are cache-coherent (ccNUMA), meaning that changes in the memory done from one CPU must be visible by the other CPUs and transparent for the programmer.
These NUMA behaviours reduce the performance of applications and can pose a challenge to the programmers. To tackle this issue, this thesis proposes solutions, at the software and hardware levels, to improve the data locality in NUMA systems and, therefore, the performance of applications in these computer systems.
The first contribution shows how considering hardware prefetching simultaneously with thread and data placement in NUMA systems can find configurations with better performance than considering these aspects separately. The performance results combined with performance counters are then used to build a performance model to predict, both offline and online, the best configuration for new applications not in the model. The evaluation is done using two different high performance NUMA systems, and the performance counters collected in one machine are used to predict the best configurations in the other machine.
The second contribution builds on the idea that prefetching can have a strong effect in NUMA systems and proposes a
NUMA-aware hardware prefetching scheme. This scheme is generic and can be applied to multiple hardware prefetchers with a low hardware cost but giving very good results. The evaluation is done using a cycle-accurate architectural simulator and provides detailed results of the performance, the data transfer reduction and the energy costs.
Finally, the third and last contribution consists in scheduling algorithms for task-based programming models. These programming models help improve the programmability of applications in parallel systems and also provide useful information to the underlying runtime system. This information is used to build a task dependency graph (TDG), a directed acyclic graph that models the application where the nodes are sequential pieces of code known as tasks and the edges are the data dependencies between the different tasks. The proposed scheduling algorithms use graph partitioning techniques and provide a scheduling for the tasks in the TDG that minimises the data transfers between the different NUMA regions of the system. The results have been evaluated in real ccNUMA systems with multiple NUMA regions.
La fi de la llei de Dennard ha provocat un estancament de la freqüència de rellotge dels computadors. Amb l'objectiu de superar aquest fet, durant les darreres dues dècades els fabricants han integrat més quantitat d'unitats de còmput als sistemes mitjançant la interconnexió de nodes diferents, la inclusió de múltiples xips als nodes i l'increment de nuclis de processador a cada xip. La rapidesa de la memòria principal no ha evolucionat amb el mateix factor que els processadors; és molt més lenta i hi ha la necessitat de proporcionar més ample de banda als processadors, especialment amb l'increment del nombre de nuclis i xips. Tot mantenint un adreçament compartit en el qual tots els processadors poden accedir a la memòria sencera, les solucions han estat al voltant de la integració de més memòries: amb tecnologies modernes com HBM (high-bandwidth memories) i NVM (non-volatile memories), fent que grups de nuclis (com sòcols sencers) tinguin accés més ràpid a una part de la DRAM o amb la combinació de solucions. Això ha provocat una heterogeneïtat en la velocitat d'accés a la memòria principal, en funció del nucli que sol·licita l'accés a una adreça en particular i la seva localització física, fet que provoca uns comportaments no uniformes en l'accés a la memòria (non-uniform memory access, NUMA). A més, sovint tenen memòries cau coherents (cache-coherent NUMA, ccNUMA), que implica que qualsevol canvi fet a la memòria des d'un nucli d'un processador ha de ser visible la resta de manera transparent. Aquests comportaments redueixen el rendiment de les aplicacions i suposen un repte. Per abordar el problema, a la tesi s'hi proposen solucions, a nivell de programari i maquinari, que milloren la localitat de dades als sistemes NUMA i, en conseqüència, el rendiment de les aplicacions en aquests sistemes. La primera contribució mostra que, quan es tenen en compte alhora la precàrrega d'adreces de memòria amb maquinari (hardware prefetching) i les decisions d'ubicació dels fils d'execució i les dades als sistemes NUMA, es poden trobar millors configuracions que quan es condieren per separat. Una combinació dels resultats de rendiment i dels comptadors disponibles al sistema s'utilitza per construir un model de rendiment per fer la predicció, tant per avançat com també en temps d'execució, de la millor configuració per aplicacions que no es troben al model. L'avaluació es du a terme a dos sistemes NUMA d'alt rendiment, i els comptadors mesurats en un sistema s'usen per predir les millors configuracions a l'altre sistema. La segona contribució es basa en la idea que el prefetching pot tenir un efecte considerable als sistemes NUMA i proposa un esquema de precàrrega a nivell de maquinari que té en compte els efectes NUMA. L'esquema és genèric i es pot aplicar als algorismes de precàrrega existents amb un cost de maquinari molt baix però amb molt bons resultats. S'avalua amb un simulador arquitectural acurat a nivell de cicle i proporciona resultats detallats del rendiment, la reducció de les comunicacions de dades i els costos energètics. La tercera i darrera contribució consisteix en algorismes de planificació per models de programació basats en tasques. Aquests simplifiquen la programabilitat de les aplicacions paral·leles i proveeixen informació molt útil al sistema en temps d'execució (runtime system) que en controla el funcionament. Amb aquesta informació es construeix un graf de dependències entre tasques (task dependency graph, TDG), un graf dirigit i acíclic que modela l'aplicació i en el qual els nodes són fragments de codi seqüencial (o tasques) i els arcs són les dependències de dades entre les tasques. Els algorismes de planificació proposats fan servir tècniques de particionat de grafs i proporcionen una planificació de les tasques del TDG que minimitza la comunicació de dades entre les diferents regions NUMA del sistema. Els resultats han estat avaluats en sistemes ccNUMA reals amb múltiples regions NUMA.
El final de la ley de Dennard ha provocado un estancamiento de la frecuencia
de reloj de los computadores. Con el objetivo de superar este problema,
durante las últimas dos décadas los fabricantes han integrado más unidades
de cómputo en los sistemas mediante la interconexión de nodos diferentes,
la inclusión de múltiples chips en los nodos y el incremento de núcleos
de procesador en cada chip. La rapidez de la memoria principal no ha
evolucionado con el mismo factor que los procesadores; es mucho más lenta
y hay la necesidad de proporcionar más ancho de banda a los procesadores,
especialmente con el incremento del número de núcleos y chips.
Aun manteniendo un sistema de direccionamiento compartido en el que
todos los procesadores pueden acceder al conjunto de la memoria, las soluciones
han oscilado alrededor de la integración de más memorias: usando
tecnologías modernas como las memorias de alto ancho de banda (highbandwidth
memories, HBM) y memorias no volátiles (non-volatile memories,
NVM), haciendo que grupos de núcleos (como zócalos completos) tengan
acceso más veloz a un subconjunto de la DRAM, o con la combinación de
soluciones. Esto ha provocado una heterogeneidad en la velocidad de acceso
a la memoria principal, en función del núcleo que solicita el acceso a una
dirección de memoria en particular y la ubicación física de esta dirección, lo
que provoca unos comportamientos no uniformes en el acceso a la memoria
(non-uniform memory access, NUMA). Además, muchos de estos sistemas
tienen memorias caché coherentes (cache-coherent NUMA, ccNUMA), lo
que implica que cualquier cambio hecho en la memoria desde un núcleo
de un procesador debe ser visible por el resto de procesadores de forma
transparente para los programadores.
Estos comportamientos NUMA reducen el rendimiento de las aplicaciones
y pueden suponer un reto para los programadores. Para abordar dicho problema,
en esta tesis se proponen soluciones, a nivel de software y hardware,
que mejoran la localidad de datos en los sistemas NUMA y, en consecuencia,
el rendimiento de las aplicaciones en estos sistemas informáticos. La primera contribución muestra que, cuando se tienen en cuenta a la vez
la precarga de direcciones de memoria mediante hardware (o hardware
prefetching ) y las decisiones de la ubicación de los hilos de ejecución y los
datos en los sistemas NUMA, se pueden hallar mejores configuraciones que
cuando se consideran ambos aspectos por separado. Con una combinación
de los resultados de rendimiento y de los contadores disponibles en el
sistema se construye un modelo de rendimiento, tanto por avanzado como
en en tiempo de ejecución, de la mejor configuración para aplicaciones que
no están incluidas en el modelo. La evaluación se realiza en dos sistemas
NUMA de alto rendimiento, y los contadores medidos en uno de los sistemas
se usan para predecir las mejores configuraciones en el otro sistema.
La segunda contribución se basa en la idea de que el prefetching puede
tener un efecto considerable en los sistemas NUMA y propone un esquema
de precarga a nivel hardware que tiene en cuenta los efectos NUMA. Este
esquema es genérico y se puede aplicar a diferentes algoritmos de precarga
existentes con un coste de hardware muy bajo pero que proporciona muy
buenos resultados. Dichos resultados se obtienen y evalúan mediante un
simulador arquitectural preciso a nivel de ciclo y proporciona resultados
detallados del rendimiento, la reducción de las comunicaciones de datos y
los costes energéticos.
Finalmente, la tercera y última contribución consiste en algoritmos de planificación
para modelos de programación basados en tareas. Estos modelos
simplifican la programabilidad de las aplicaciones paralelas y proveen información
muy útil al sistema en tiempo de ejecución (runtime system)
que controla su funcionamiento. Esta información se utiliza para construir
un grafo de dependencias entre tareas (task dependency graph, TDG), un
grafo dirigido y acíclico que modela la aplicación y en el ue los nodos son
fragmentos de código secuencial, conocidos como tareas, y los arcos son las
dependencias de datos entre las distintas tareas. Los algoritmos de planificación
que se proponen usan técnicas e particionado de grafos y proporcionan
una planificación de las tareas del TDG que minimiza la comunicación de
datos entre las distintas regiones NUMA del sistema. Los resultados se han
evaluado en sistemas ccNUMA reales con múltiples regiones NUMA.