A numerical model for the simulation of the performance of an oscillating water column (OWC) subjected to non-breaking and breaking waves is proposed in this paper. The numerical model consists of a hydrodynamic model specifically designed to simulate breaking waves and a pneumatic model that takes into account the air compressibility. The proposed numerical model was applied to evaluate the potential mean annual energy production from the waves of two coastal sites characterized by different hydrodynamic conditions: a deep-water condition, where the OWC interacts with non-breaking waves, and a shallow-water condition, where the OWC is subjected to breaking waves. The numerical results show that the effects of the air compressibility can be considered negligible only in numerical simulations of the performances of reduced-scale OWC devices, such as those used in laboratory experiments. We demonstrated that in real-scale simulations, the effect of the air compressibility within the OWC chamber significantly reduces its ability to extract energy from waves. The numerical results show that the effect of the air compressibility is even more significant in the case of a real-scale OWC located in the surf zone, where it interacts with breaking waves.