The genome era allowed us to evaluate different aspects on genetic variation, with a precise manner followed by a valuable tip to guide the improvement of knowledge and direct to upgrade to human life. In order to scrutinize these treasured resources, some bioinformatics tools permit us a deep exploration of these data. Among them, we show the importance of the discrete non-decimated wavelet transform (NDWT). The wavelets have a better ability to capture hidden components of biological data and an efficient link between biological systems and the mathematical objects used to describe them. The decomposition of signals/ sequences at different levels of resolution allows obtaining distinct characteristics in each level. The analysis using technique of wavelets has been growing increasingly in the study of genomes. One of the great advantages associated to this method corresponds to the computational gain, that is, the analyses are processed almost in real time. The applicability is in several areas of science, such as physics, mathematics, engineering, and genetics, among others. In this context, we believe that using R software and applied NDWT coupled with elastic net domains and Hurst exponent will be of valuable guideline to researchers of genetics in the investigation of the genetic variability.