This paper deals with the elastodynamic modeling and parameter sensitivity analysis of a parallel manipulator with articulated traveling plate (PM-ATP) for assembling large components in aviation and aerospace. In the elastodynamic modeling, the PM-ATP is divided into four levels, i.e., element, part, substructure, and the whole mechanism. Herein, three substructures, including translation, bar, and ATP, are categorized according to the composition of the PM-ATP. Based on the kineto-elastodynamic (KED) method, differential motion equations of lower levels are formulated and assembled to build the elastodynamic model of the upper level. Degrees of freedom (DoFs) at connecting nodes of parts and deformation compatibility conditions of substructures are considered in the assembling. The proposed layer-by-layer method makes the modeling process more explicit, especially for the ATP having complex structures and multiple joints. Simulations by finite element software and experiments by dynamic testing system are carried out to verify the natural frequencies of the PM-ATP, which show consistency with the results from the analytical model. In the parameter sensitivity analysis, response surface method (RSM) is applied to formulate the surrogate model between the elastic dynamic performances and parameters. On this basis, differentiation of performance reliability to the parameter mean value and standard variance are adopted as the sensitivity indices, from which the main parameters that greatly affect the elastic dynamic performances can be selected as the design variables. The present works are necessary preparations for future optimal design. They can also provide reference for the analysis and evaluation of other PM-ATPs.