Scholarly big data, which is a large scale collection of academic information, technical data, and collaboration relationships, has attracted increasing attentions, ranging from industries to academic societies. The widespread adoption of social computing paradigm has made it easier for researchers to join collaborative research activities, and share the academic data more extensively than ever before across the highly interlaced academic networks. In this study, we focus on the academic influence aware and multidimensional network analysis based on the integration of multi-source scholarly big data. Following three basic relations: Researcher-Researcher, Researcher-Article, and Article-Article, a set of measures is introduced and defined to quantify correlations in terms of activity-based collaboration relationship, specialty-aware connection, and topic-aware citation fitness among a series of academic entities (e.g., researchers and articles) within a constructed multidimensional network model. An improved Random Walk with Restart (RWR) based algorithm is developed, in which the time-varying academic influence is newly defined and measured in a certain social context, to provide researchers with research collaboration navigation for their future works. Experiments and evaluations are conducted to demonstrate the practicability and usefulness of our proposed method in scholarly big data analysisusing DBLP and ResearchGate data.