2010 IEEE International Conference on Acoustics, Speech and Signal Processing 2010
DOI: 10.1109/icassp.2010.5494973
|View full text |Cite
|
Sign up to set email alerts
|

A weighted discriminative approach for image denoising with overcomplete representations

Abstract: We present a novel weighted approach for shrinkage functions learning in image denoising. The proposed approach optimizes the shape of the shrinkage functions and maximizes denoising performance by emphasizing the contribution of sparse overcomplete representation components. In contrast to previous work, we apply the weights in the overcomplete domain and formulate the restored image as a weighted combination of the post-shrinkage overcomplete representations. We further utilize this formulation in an offline… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2011
2011
2021
2021

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 9 publications
(3 citation statements)
references
References 4 publications
0
2
0
1
Order By: Relevance
“…Selain untuk mendapatkan informasi yang terdapat pada citra, pengolahan citra biasanya digunakan untuk menghasilkan kualitas citra yang lebih baik [16]. Menurut [17], pengolahan citra dibagi menjadi tiga jenis.…”
Section: Image Processingunclassified
“…Selain untuk mendapatkan informasi yang terdapat pada citra, pengolahan citra biasanya digunakan untuk menghasilkan kualitas citra yang lebih baik [16]. Menurut [17], pengolahan citra dibagi menjadi tiga jenis.…”
Section: Image Processingunclassified
“…Many techniques have been proposed to reduce Gaussian noise. In fact, the application of the wavelet transform with Bayesian technique in image denoising has shown remarkable success over the last decade [5][6][7][8][9]. In additive white Gaussian noise (AWGN) model, this paper is concerned with dual-tree complex wavelet-based image denoising using Bayesian techniques.…”
Section: Introductionmentioning
confidence: 99%
“…Shang and Huang [25] proposed a method for denoising using extended nonnegative sparse coding neural network shrinkage algorithm. Adler et al [26] proposed a new approach that optimizes the shape of the shrinkage functions and maximizes denoising performance by emphasizing the contribution of sparse overcomplete representations. Liu and Liu [1] have proposed image denoising based on diffusion tensors.…”
Section: Introductionmentioning
confidence: 99%