2022
DOI: 10.1155/2022/2904625
|View full text |Cite
|
Sign up to set email alerts
|

A Whale Optimization Algorithm with Convergence and Exploitability Enhancement and Its Application

Abstract: The whale optimization algorithm (WOA) is inspired by humpback whale social behavior and WOA is a popular swarm intelligence algorithm. Yet, the WOA does have certain flaws, such as a restricted global search capability and an inconsistent convergence speed, and when dealing with complex optimization problems, WOA is easy to fall into local optimum. To address the WOA’s shortcomings, a modified whale optimization algorithm with convergence and exploitability enhancement called MWOA-CEE is proposed. Three opera… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 51 publications
0
1
0
Order By: Relevance
“…Random initialization of the original WOA does not produce an even distribution of the initial population throughout the whole search space, which affects the algorithm's efficiency in solving problems. Additionally, the algorithm has a tendency to converge towards local extrema during the late stage of population evolution [48,49], which results in poor convergence accuracy.…”
Section: Introductionmentioning
confidence: 99%
“…Random initialization of the original WOA does not produce an even distribution of the initial population throughout the whole search space, which affects the algorithm's efficiency in solving problems. Additionally, the algorithm has a tendency to converge towards local extrema during the late stage of population evolution [48,49], which results in poor convergence accuracy.…”
Section: Introductionmentioning
confidence: 99%