We report the demonstration of an instantaneous frequency measurement system based on the four-wave mixing (FWM) effect in short dispersion engineered slow-light silicon photonic crystal waveguides for RF frequency measurement purposes within a range of 10 MHz to 80 GHz. Three nonlinear media were investigated including 3 mm ridge waveguide, 80 µm nanowire, and 80 µm photonic crystal (PhC). The system size could thus be decreased, and as a result system integration would become possible. We have shown that the optical power required to excite FWM is low enough to remove any need for optical amplification, and hence the system noise floor will be kept low. Issues due to the amplifier saturation will also be resolved this way. As a result, no noise reduction system, like lock-in amplification, would be required. A better system latency will also be achieved accordingly. The system dynamic range would also be improved in two ways. First, due to the low noise floor, and second, because of removing any optical amplifier that possibly could become saturated at higher power levels. All three media behaviors were simulated by the split step Fourier method, and the results showed that the best medium to be used is PhC.