Recently, a new definition for a Wigner distribution function for a one-dimensional finite quantum system, in which the position and momentum operators have a finite (multiplicityfree) spectrum, was developed. This distribution function is defined on discrete phase-space (a finite square grid), and can thus be referred to as the Wigner matrix. In the current paper, we compute this Wigner matrix (or rather, the pre-Wigner matrix, which is related to the Wigner matrix by a simple matrix multiplication) for the case of the su(2) finite oscillator. The first expression for the matrix elements involves sums over squares of Krawtchouk polynomials, and follows from standard techniques. We also manage to present a second solution, where the matrix elements are evaluations of Dyck polynomials. These Dyck polynomials are defined in terms of the well known Dyck paths. This combinatorial expression of the pre-Wigner matrix elements turns out to be particularly simple.