High-frequency sampling is not only a prerogative of high-energy physics or machinery diagnostic monitoring: critical environmental and structural health monitoring applications also have such a challenging constraint. Moreover, such unique design constraints are often coupled with the requirement of high synchronism among the distributed acquisition units, minimal energy consumption, and large communication bandwidth. Such severe constraints have led scholars to suggest wired centralized monitoring solutions, which have only recently been complemented with wireless technologies. This article suggests a hybrid wirelesswired monitoring system combining the advantages of wireless and wired technologies within a distributed high-frequency-sampling framework. The suggested architecture satisfies the mentioned constraints, thanks to an ad-hoc design of the hardware, the availability of efficient energy management policies, and up-to-date harvesting mechanisms. At the same time, the architecture supports adaptation capabilities by relying on the remote reprogrammability of key application parameters. The proposed architecture has been successfully deployed in the Swiss-Italian Alps to monitor the collapse of rock faces in three geographical areas.
ACM Reference Format:Alippi, C., Camplani, R., Galperti, C., Marullo, A., and Roveri, M. 2013. A high-frequency sampling monitoring system for environmental and structural applications.