2001
DOI: 10.1109/78.928695
|View full text |Cite
|
Sign up to set email alerts
|

A WISE method for designing IIR filters

Abstract: Abstract-The problem of designing optimal digital IIR filters with frequency responses approximating arbitrarily chosen complex functions is considered. The real-valued coefficients of the filter's transfer function are obtained by numerical minimization of carefully formulated cost, which is referred here to as the weighted integral of the squared error (WISE) criterion. The WISE criterion linearly combines the WLS criterion that is used in the weighted least squares approach toward filter design and some tim… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

0
28
0

Year Published

2006
2006
2017
2017

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 44 publications
(28 citation statements)
references
References 22 publications
0
28
0
Order By: Relevance
“…Another method is via a WISE approach [19]. An optimal solution can be found by computing a gradient of the corresponding cost function.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Another method is via a WISE approach [19]. An optimal solution can be found by computing a gradient of the corresponding cost function.…”
Section: Introductionmentioning
confidence: 99%
“…This method is to model rational IIR filters as FIR filters and then minimized the difference between a norm of these two classes of filters. However, since all these methods [4]- [8], [17], [19] are based on formulating their design problems as unconstrained optimization problems, the stability, as well as the size of the ripple magnitudes in passbands and stopbands of the filters, are not guaranteed. Moreover, they required phase information for the desired filter responses.…”
Section: Introductionmentioning
confidence: 99%
“…1) implementation of a phase equalizing allpass filter cascaded with nonlinear-phase IIR filter [1], 2) model-reduction techniques which are applied to approximate the frequency response of finite impulse response (FIR) filter [2], [3], 3) a direct way, i.e., the cost function of the design optimization problem is directly based on desired frequency response [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]. In this paper we focus on the latter method.…”
mentioning
confidence: 99%
“…The IIR filter design procedures have to guarantee the filter stability which is generally non-easy task. There exist several ways of ensuring the stability of filter resulting from optimization of (1), with good survey of such methods having been presented in [12]. The optimization techniques used for stable IIR filter design can be of either constrained or unconstrained type.…”
mentioning
confidence: 99%
“…The L 2 norm (least squares design [7], [9], [10]) or the L ∞ norm (minimax design [6], [11], [15]) are often employed for the design of digital filters. The L 2 norm criterion optimizes the total quality of digital filter, on the other hand, the L ∞ norm guarantees the lower bound of filter performance.…”
Section: Introductionmentioning
confidence: 99%