Cell morphology is critical for all cell functions. This is particularly true for glial cells as they rely on their complex shape to contact and support neurons. However, methods to quantify complex glial cell shape accurately and reproducibly are lacking. To address this gap in quantification approaches, we developed an analysis pipeline called "GliaMorph". GliaMorph is a modular image analysis toolkit developed to perform (i) image pre-processing, (ii) semi-automatic region-of-interest (ROI) selection, (iii) apicobasal texture analysis, (iv) glia segmentation, and (v) cell feature quantification. Mueller Glia (MG) are the principal retinal glial cell type with a stereotypic shape linked to their maturation and physiological status. We here characterized MG on three levels, including (a) global image-level, (b) apicobasal texture, and (c) apicobasal vertical-to-horizontal alignment. Using GliaMorph, we show structural changes occurring in the developing retina. Additionally, we study the loss of cadherin2 in the zebrafish retina, as well as a glaucoma mouse disease model. The GliaMorph toolkit enables an in-depth understanding of MG morphology in the developing and diseased retina.