Background
The secretome of primary bovine mammosphere-derived epithelial cells (MDECs) has been shown to exert antimicrobial, regenerative, and immunomodulatory properties in vitro, which warrants its study as a potential biologic treatment with the potential to be translated to human medicine. Currently, the use of the MDEC secretome as a therapy is constrained by the limited life span of primary cell cultures and the decrease of secretome potency over cell passages.
Methods
To address these limitations, early-passage bovine MDECs were immortalized using hTERT, a human telomerase reverse transcriptase. The primary and immortal MDECs were compared morphologically, transcriptomically, and phenotypically. The functional properties and proteomic profiles of the secretome of both cell lines were evaluated and compared. All experiments were performed with both low and high passage cell cultures.
Results
We confirmed through in vitro experiments that the secretome of immortalized MDECs, unlike that of primary cells, maintained antimicrobial and pro-migratory properties over passages, while pro-angiogenic effects of the secretome from both primary and immortalized MDECs were lost when the cells reached high passage. The secretome from primary and immortalized MDECs, at low and high passages exerted immunomodulatory effects on neutrophils in vitro.
Conclusions
High passage immortalized MDECs retain a bioactive secretome with antimicrobial, regenerative, and immunomodulatory properties, suggesting they may serve as a consistent cell source for therapeutic use.