2019
DOI: 10.1055/s-0039-1677937
|View full text |Cite
|
Sign up to set email alerts
|

A Year of Papers Using Biomedical Texts: Findings from the Section on Natural Language Processing of the IMIA Yearbook

Abstract: Objectives: To analyze the content of publications within the medical Natural Language Processing (NLP) domain in 2018. Methods: Automatic and manual pre-selection of publications to be reviewed, and selection of the best NLP papers of the year. Analysis of the important issues. Results: Two best papers have been selected this year. One dedicated to the generation of multi- documents summaries and another dedicated to the generation of imaging reports. We also proposed an analysis of th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2019
2019
2021
2021

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 32 publications
0
1
0
1
Order By: Relevance
“…Peringkas Teks Otomatis adalah pembuatan bentuk yang lebih singkat dari suatu teks dengan memanfaatkan sistem yang dijalankan dan dioperasikan pada komputer [2]. Dua diantaranya peringkas teks dalam bidang medis adalah seperti penelitian oleh [3] [1].Banyak Teknik yang digunakan dalam peringkasan ini, antara lain Teknik Pendekatan statistika dan Teknik Pendekatan dengan Naturan Language Analysis. Beberapa Teknik Pendekatan statistika adalah Sebagai berikut [2]:…”
Section: Tinjauan Pustakaunclassified
“…Peringkas Teks Otomatis adalah pembuatan bentuk yang lebih singkat dari suatu teks dengan memanfaatkan sistem yang dijalankan dan dioperasikan pada komputer [2]. Dua diantaranya peringkas teks dalam bidang medis adalah seperti penelitian oleh [3] [1].Banyak Teknik yang digunakan dalam peringkasan ini, antara lain Teknik Pendekatan statistika dan Teknik Pendekatan dengan Naturan Language Analysis. Beberapa Teknik Pendekatan statistika adalah Sebagai berikut [2]:…”
Section: Tinjauan Pustakaunclassified
“…BioBERT, a biomedical-specific language model, was constructed using approximately 18 billion words from PubMed abstracts and PubMed Central full-text articles [ 4 ]. Although English is the main language being used in the field of medical NLP, multilingual approaches involving other languages (eg, Chinese, German, French, Italian, Japanese, Korean) are also being investigated [ 5 , 6 ]. Technical validation of language embedding models is also highly important in the field of medical NLP.…”
Section: Introductionmentioning
confidence: 99%