Pontine noradrenergic neurons of the locus coeruleus (LC) and sub-coeruleus (SubC) region cease firing during rapid eye movement sleep (REMS). This plays a permissive role in the generation of REMS and may contribute to state-dependent modulation of transmission in the central nervous system. Whether all pontomedullary catecholaminergic neurons, including those in the A1/C1, A2/ C2 and A7 groups, have REMS-related suppression of activity has not been tested. We used Fos protein expression as an indirect marker of the level of neuronal activity and linear regression analysis to determine whether pontomedullary cells identified by tyrosine hydroxylase (TH) immunohistochemistry have reduced Fos expression following REMS-like state induced by pontine microinjections of a cholinergic agonist, carbachol in urethane-anesthetized rats. The percentage of Fos-positive TH cells was negatively correlated with the cumulative duration of REMS-like episodes induced during 140 min prior to brain harvesting in the A7 and rostral A5 groups bilaterally (p<0.01 for both), and in SubC neurons on the side opposite to carbachol injection (p<0.05). Dorsal medullary A2/C2 neurons did not exhibit such correlation, but their Fos expression (and that in A7, rostral A5 and SubC neurons) was positively correlated with the duration of the interval between the last REMSlike episode and the time of sacrifice (p<0.05). In contrast, neither of these correlations was significant for A1/C1 or caudal A5 neurons. These findings suggest that, similar to the prototypic LC neurons, neurons of the A7, rostral A5 and A2/C2 groups have reduced or abolished activity during REMS, whereas A1/C1 and caudal A5 neurons do not have this feature. The reduced during REMS activity in A2/C2, A5 and A7 neurons, and the associated decrements in norepinephrine release, may cause state-dependent modulation of transmission in brain somato-and viscerosensory, somatomotor, and cardiorespiratory pathways.Keywords autonomic regulation; brainstem; locus coeruleus; motor control; norepinephrine *Corresponding author: Irma Rukhadze, Ph.D., Department of Animal Biology 209E/VET, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6046, USA, Tel. +215-898-6489, Fax. +215-573-5186 E-mail: rukhadze@vet.upenn.edu (I. Rukhadze). Suggested Neuroscience Section Editor (Systems Neuroscience): Dr. Miles Herkenham, NIMH, Section on Functional Neuroanatomy, Bldg. 36, Rm. 2D15, 36, Convent Dr., MSC 4070, Bethesda, MD 20892-4070, USA.Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
NIH Public Ac...