Rechargeable ion batteries require anode materials with excellent performance, presenting a key challenge for researchers. This paper explores the potential of using two-dimensional dumbbell silicene as an anode material for alkali metal ion batteries through density functional theory (DFT) calculations. Our findings demonstrate that alkali metal ions have negative adsorption energies on dumbbell silicene, and the energy barriers for Li/Na/K ion diffusion are as low as 0.032/0.055/0.21 eV, indicating that metal ions can easily diffuse across the entire surface of dumbbell silicene. Additionally, the average open circuit voltages of dumbbell silicene as anode for Li-ion, Na-ion, and K-ion batteries are 0.42 V, 0.41 V, and 0.60 V, respectively, with corresponding storage capacities of 716, 622, and 716 mAh/g. These results suggest that dumbbell silicene is an ideal anode material for Li-ion, Na-ion, and K-ion batteries, with high capacity, low open circuit voltage, and high ion diffusion kinetics. Moreover, our calculations show that the theoretical capacities obtained using DFT-D2 are higher than those obtained using DFT-D3, providing a valuable reference for subsequent theoretical calculations.