AABBA Graph Kernel: Atom-Atom, Bond-Bond, and Bond-Atom Autocorrelations for Machine Learning
Lucía Morán-González,
Jørn Eirik Betten,
Hannes Kneiding
et al.
Abstract:Graphs are one of the most natural and powerful representations available for molecules; natural because they have an intuitive correspondence to skeletal formulas, the language used by chemists worldwide, and powerful, because they are highly expressive both globally (molecular topology) and locally (atom and bond properties). Graph kernels are used to transform molecular graphs into fixed-length vectors, which, based on their capacity of measuring similarity, can be used as fingerprints for machine learning … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.