“…Holistic Features Based Methods Given a backbone C-NN such as ResNet-50 [21] or other network architectures [2,51,71,78], this type of methods learns discriminative holistic features from the feature map directly. Specifically, they aim to learn the features by improving loss functions [9,14,22,31,41,42,50,55,63], improving the training techniques [1,4,12,24,32,35,37,54], adding additional network modules [23,23,51,62], using extra semantic annotations [30,46,47,79] or generating more training samples [17,33,72,76,77]. Besides, more recent studies [3,6,8,10,27,28,38,46,48,53,58,61,64,…”