In a variety of organisms, including plants and several eubacteria, isoprenoids are synthesized by the mevalonate-independent 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Although different enzymes of this pathway have been described, the terminal biosynthetic steps of the MEP pathway have not been fully elucidated. In this work, we demonstrate that the gcpE gene of Escherichia coli is involved in this pathway. E. coli cells were genetically engineered to utilize exogenously provided mevalonate for isoprenoid biosynthesis by the mevalonate pathway. These cells were then deleted for the essential gcpE gene and were viable only if the medium was supplemented with mevalonate or the cells were complemented with an episomal copy of gcpE.In all organisms studied so far, isoprenoids derive from the common isoprene units, isopentenyl pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate (DMAPP). In mammals and in fungi, IPP and DMAPP are formed exclusively by the mevalonate pathway (11). In contrast, many eubacteria (including Escherichia coli), algae, and the plastids of higher plants synthesize IPP and DMAPP by the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway (9, 34). The MEP pathway was also identified in a plastid-like organelle of malaria parasites (15). Since the MEP pathway is absent in humans, it has been validated as a drug target for the treatment of both bacterial and parasitic infections (15,29).The pathway initiates with the formation of 1-deoxy-D-xylulose 5-phosphate (DOXP) by condensation of pyruvate and D-glyceraldehyde 3-phosphate catalyzed by the DOXP synthase (Dxs) (1,6,20,22,24,25,35,38). DOXP is then converted by the DOXP reductoisomerase (Dxr) into MEP (Fig.