1956
DOI: 10.1007/978-3-642-94669-1
|View full text |Cite
|
Sign up to set email alerts
|

Abelsche Funktionen und Algebraische Geometrie

Abstract: Schon vor fUnf J ahren hatte ich mit meinem inzwischen verstorbenen Freunde FABIO CONFORTO (1909CONFORTO ( -1954 vereinbart, eine deutsche Bearbeitung seiner Vorlesungen uber ABELsche Funktionen *), die er im Studienjahr 1940/41 in Rom gehalten hat, herauszugeben. Da aber eine grundliche Oberarbeitung des aus dem Jahre 1942 stammenden Textes notwendig erschien, die CONFORTO selbst besorgen wollte**), wurde die Verwirklichung dieses Planes zunachst noch hinausgeschoben. Aber bald nach dem AbschluB des Vertrages… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
20
0
2

Year Published

1961
1961
2013
2013

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 47 publications
(22 citation statements)
references
References 0 publications
0
20
0
2
Order By: Relevance
“…It follows immediately from the fact that F acts as a group of transformations on ~ that (ST, z) = r (S, Tz) r (T, z) (1) for all S, TeF; and conversely any mapping ~: F x ~/~ ~* depending analytically on ze/f/ and satisfying (1) describes the action of F as a group of analytic bundle mappings on the product bundle ~ =/f/x ~ and hence also describes a complex analytic line bundle ~ =~/F over M. Such a mapping r F x AT/--~ C* will be called a factor of automorphy for the action of the group F on/17/. If ~, t/are complex analytic line bundles over M described by factors ofautomorphy ~: F x 1%71 __+ C*, t/: F x M ~ C*, then any complex analytic bundle mapping f: ~--~ t/ lifts to a complex analytic bundle mapping f: if/x C ~ AT/x ~ which must be of the form f(z, w)= (z, f(z) w) for some complex analytic mapping f: ~/--* C and which must commute with the appropriate actions of F, hence which must satisfy (2) for all TeF; and conversely any complex analytic mapping f: /~/-* satisfying (2) describes a complex analytic bundle mapping f: ~-* ~/.…”
Section: T(z W)=(tz ~(T Z) W)mentioning
confidence: 93%
“…It follows immediately from the fact that F acts as a group of transformations on ~ that (ST, z) = r (S, Tz) r (T, z) (1) for all S, TeF; and conversely any mapping ~: F x ~/~ ~* depending analytically on ze/f/ and satisfying (1) describes the action of F as a group of analytic bundle mappings on the product bundle ~ =/f/x ~ and hence also describes a complex analytic line bundle ~ =~/F over M. Such a mapping r F x AT/--~ C* will be called a factor of automorphy for the action of the group F on/17/. If ~, t/are complex analytic line bundles over M described by factors ofautomorphy ~: F x 1%71 __+ C*, t/: F x M ~ C*, then any complex analytic bundle mapping f: ~--~ t/ lifts to a complex analytic bundle mapping f: if/x C ~ AT/x ~ which must be of the form f(z, w)= (z, f(z) w) for some complex analytic mapping f: ~/--* C and which must commute with the appropriate actions of F, hence which must satisfy (2) for all TeF; and conversely any complex analytic mapping f: /~/-* satisfying (2) describes a complex analytic bundle mapping f: ~-* ~/.…”
Section: T(z W)=(tz ~(T Z) W)mentioning
confidence: 93%
“…'t ~-t and our theorem has been proved. The numbers ~" considered in the previous proof play an important role for the factors of automorphy and in connection herewith in the theory of automorphic functions [1,3,4,5,9,10].…”
Section: (M4ms) (M~:m2m1m~2mi-im~-im~mamf~m3) -6 = Bmentioning
confidence: 99%
“…M ~ statt M mit passenden U, V E t9 (n, ¢~). Dann folgt a = fl = 1, also (27) 0<h11, h~ hll (t,~= 1 ..... 2n). …”
Section: J-i(p)me a (N A)unclassified
“…Die Ungleichungen (27), (28) : F(n, a)] < ~ sind die Nenner samtlicher Matrizen /V C T ~ A (n, a) unabh~ngig yon iv beschr~nkt, ttilfssatz 9 ist bewiesen. tlilfssatz 10.…”
Section: N)unclassified