This study aims to investigate the effects of CLAUDIN-6 (CLDN6) on cell apoptosis and proliferation of bovine cumulus cells (CCs). Immunofluorescence staining was used to localize CLDN6 protein in CCs. Three pairs of siRNA targeting CLDN6 and one pair of siRNA universal negative sequence as control were transfected into bovine CCs. Then, the effective siRNA was screened by real-time quantitative PCR (RT-qPCR) and Western blotting. The mRNA expression levels of apoptosis related genes (CASPASE-3, BAX and BCL-2) and proliferation related genes (PCNA, CDC42 and CCND2) were evaluated by RT-qPCR in CCs with CLDN6 knockdown. Cell proliferation, apoptosis and cell cycle were detected by flow cytometry with CCK-8 staining, Annexin V-FITC staining and propidium iodide staining, respectively. Results showed that the CLDN6 gene was expressed in bovine CCs and the protein was localized in cell membranes and cytoplasms. After CLDN6 was knocked down in CCs, the cell apoptosis rate significantly decreased and the pro-apoptotic genes BAX and CASPASE-3 were down-regulated significantly, whereas the anti-apoptotic gene BCL-2 was markedly up-regulated (p < 0.05). Additionally, CLDN6 knockdown significantly enhanced cell proliferation of CCs at 72 h after siRNA transfection. The mRNA levels of proliferation-related genes PCNA, CCND2 and CDC42 increased obviously in CCs with CLDN6 knockdown (p < 0.05). After CLDN6 was down-regulated, the percentage of CCs at S phase was significantly increased (p < 0.05). However, there was no remarkable difference in the percentages of cells at the G0/G1 phase and G2/M phase between CCs with or without CLDN6 knockdown (p > 0.05). Therefore, the expression of CLDN6 and its effects on cell proliferation, apoptosis and cell cycle of bovine CCs were first studied. CLDN6 low expression inhibited cell apoptosis, induced cell proliferation and cell cycle arrest of bovine CCs.