BackgroundRenal cell carcinoma (RCC) is an adult malignancy with 2:1 men-to-women ratio, which implies the possible role of sex hormones in RCC carcinogenesis. One of the predominant sex hormones in women before menopause, 17-β-estradiol (or E2), may regulate RCC growth by cellular mechanisms that are still not fully understood.MethodsThe expression levels of E2 receptors (ER1 and ER2) were determined in different RCC cell lines. The DNA damage response induced by E2 was determined by a DNA double-strand break marker γH2AX. To study the possible effect of E2 on oxidative stress response, RCC cells were stained with 2,7-dichlorofluorescein diacetate and analyzed by flow cytometry. Upregulation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) ser40 phosphorylation in response to oxidative stress was detected by immunoblotting. Finally, annexin V/propidium iodide (PI) double staining assay was used to determine E2-induced cellular apoptosis.ResultsVariable expression of ER1 and ER2 were found in the RCC cell lines studied (786-O, A498, and ACHN), in which ACHN and A498 showed highest and lowest ER expression, respectively. In A498 cells, E2 induced DNA double-strand breaks with positive staining of γH2AX. On the other hand, the level of reactive oxidative species were elevated in ACHN cells after E2 treatment. The E2-induced oxidative stress also induced the Ser40 phosphorylation and nuclear translocation of Nrf2. Finally, we also demonstrated that E2 induced apoptosis as revealed by annexin V/PI double staining.ConclusionsIn this study, we demonstrated the cellular effects of E2 on DNA repair, ROS production as well as Nrf2 activation, and apoptosis in RCC cell lines. Together these cellular alterations may contribute to the reduced viability of RCC cells following E2 treatment.