Background. Recent studies have revealed that inflammatory processes are involved in the pathogenesis of Parkinson's disease (PD). Multiple lines of evidence have suggested that chemokines and their receptors are involved in several neurodegenerative disorders. We have examined whether genetic polymorphisms at the genes encoding chemokines IL-8 (-251A>T), MCP-1 (-2518A/G), and RANTES (-28C>G) and chemokine receptors CCR2 (V64I) and CCR5 (-Δ32) were associated with sporadic PD risk in Isparta, Turkey. Method. The pilot case-control association study included 30 PD patients and 60 control subjects, who were all genotyped with PCR-RFLP for the five polymorphisms. Their genotype and haplotype frequencies were compared statistically. Results. One SNP (-28C>G) in RANTES revealed a significant association with PD (P (allele) < 0.0001, p-trend = 0.0007). The risk allele (G) in the homozygous and dominant models (OR = 17.29 and 32.10, 95% CI = 0.86–347.24 and 1.74–591.937, resp.) suggests additional PD risk. The haplotype TGCAN from the IL-8 (-251A>T), MCP-1 (-2518A>G), RANTES (-28C>G), CCR-2 (V64I), and CCR-5 (-Δ32) has protective effect (OR = 0.08 [CI = 0.01–0.63], p = 0.019). Conclusions. Our data are the first indication of the role of RANTES (-28C>G) in PD risk.