Wheat is one of the most important cereal crop in the world. Heat stress is an important abiotic stress limiting wheat production and productivity in the world including south-east Asia. The importance of miRNAs in gene expression under various biotic and abiotic stresses is well documented. Molecular markers, especially SSR markers, plays an important role for the success in molecular plant breeding programs. The discovery of SSRs from non-coding regions has been a challenging task. Therefore, development of novel miRNA-based SSRs from the conserved portions of the genome will prove useful for the study of genetic diversity of heat-responsive miRNA-genes in wheat. In the present study, efforts are made to mine SSR markers from 96 members of heat-responsive miRNA-genes of wheat followed by their validation using 37 contrasting (heat tolerance/susceptible) wheat genotypes. Among a set of 13 miRNA-SSRs used,7SSRs were found polymorphic. Among these polymorphic SSR markers, three found to be very informative SSRs (HT-169j, HT-160a and HT-160b) and could largely discriminate heat tolerant genotypes from the heat susceptible ones. Further analysis based on Polymorphism Information Content (PIC) revealed that miRNA genes were more diverse in susceptible genotypes compared to tolerant genotypes. Ours is the first report that the genic/miRNA markers could be successfully used to study wheat diversity, population structure and characterization of trait specific germplasm. The important and useful miRNA-based SSRs, therefore, would serve as best markers in the marker-assisted breeding programs aimed at enhancing heat tolerance of Indian wheat.