AbstractObesity is a risk factor for Alzheimer’s disease (AD), but underlying mechanisms are not clear. We analyzed peripheral clearance of amyloid β (Aβ) in overweight mice because its systemic elimination may impact on brain Aβ load, a major landmark of AD pathology. Overweight mice showed increased peripheral Aβ clearance by the liver, the major site of elimination of systemic Aβ, but unaltered brain Aβ levels. Since circulating insulin-like growth factor I (IGF-I) modulates brain Aβ clearance, and is increased in serum of overweight mice, we determined whether it affects peripheral Aβ clearance. We found that Aβ uptake by hepatocytes is stimulated by IGF-I. Moreover, mice with low serum IGF-I levels show reduced peripheral Aβ clearance. In the brain, IGF-I favored association of its receptor (IGF-IR) with Aβ precursor protein (APP), and at the same time stimulated non-amyloidogenic processing of APP in astrocytes, as indicated by an increased sAPPα/sAPPβ ratio after IGF-I treatment. Since serum IGF-I enters into the brain in an activity-dependent manner, we analyzed in overweight mice the effect of brain activation by environmental enrichment (EE) on brain IGF-IR phosphorylation and its association to APP, as a readout of IGF-I activity. After EE, significantly less activation of brain IGF-IR phosphorylation and APP/IGF-IR association was found in overweight mice as compared to lean controls. Collectively, these results indicate that diet influences peripheral clearance of Aβ without affecting brain Aβ load. Increased serum IGF-I likely contributes to enhanced peripheral Aβ clearance in overweight mice, without affecting brain Aβ clearance probably because its brain entrance is reduced.