Recent advances in experimental methods in neuroscience enable measuring in-vivo activity of large populations of neurons at cellular level resolution. To leverage the full potential of these complex datasets and analyze the dynamics of individual neurons, it is essential to extract high-resolution regions of interest, while addressing demixing of overlapping spatial components and denoising of the temporal signal of each neuron. In this paper, we propose a data-driven solution to these challenges, by representing the spatiotemporal volume as a graph in the image plane. Based on the spectral embedding of this graph calculated across trials, we propose a new clustering method, Local Selective Spectral Clustering, capable of handling overlapping clusters and disregarding clutter. We also present a new nonlinear mapping which recovers the structural map of the neurons and dendrites, and global video denoising. We demonstrate our approach on in-vivo calcium imaging of neurons and apical dendrites, automatically extracting complex structures in the image domain, and denoising and demixing their time-traces.