In total knee replacement, the investigation on the exact contact patterns at the post-cam in implanted patients from real in vivo data during daily living activities is fundamental for validating implant design concepts and assessing relevant performances. This study is aimed at verifying the restoration of natural tibio-femoral condylar kinematics by investigating the post-cam engagement at different motor tasks. An innovative validated technique, combining three-dimensional fluoroscopic and finite element analyses, was applied to measure joint kinematics during daily living activities in 15 patients implanted with guided motion posterior-stabilized total knee replacement. Motion results showed physiological antero-posterior translations of the tibio-femoral condyles for every motor task. However, high variability was observed in the position of the calculated pivot point among different patients and different motor tasks, as well as in the range of post-cam engagement. Physiological tibio-femoral joint rotations and contacts at the condyles were found restored in the present knee replacement. Articular contact patterns experienced at the post-cam were found compatible with this original prosthesis design. The present study reports replaced knee kinematics also in terms of articular surface contacts, both at the condyles and, for the first time, at the post-cam. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1396-1403, 2017.