Background: Identication of individual gait events is essential for clinical gait analysis, because it can beused for diagnostic purposes or tracking disease progression in neurological diseases such as Parkinson'sdisease. Previous research has shown that gait events can be detected from a shank-mounted inertialmeasurement unit (IMU), however detection performance was often evaluated only from straight-line walking.For use in daily life, the detection performance needs to be evaluated in curved walking and turning as well asin single-task and dual-task conditions.Methods: Participants (older adults, people with Parkinson's disease, or people who had suered from astroke) performed three dierent walking trials: 1) straight-line walking, 2) slalom walking, 3) Stroop-and-walktrial. An optical motion capture system was used a reference system. Markers were attached to the heel andtoe regions of the shoe, and participants wore IMUs on the lateral sides of both shanks. The angular velocity ofthe shank IMUs was used to detect instances of initial foot contact (IC) and nal foot contact (FC), whichwere compared to reference values obtained from the marker trajectories.Results: The detection method showed high recall, precision and F1 scores in dierent populations for bothinitial contacts and nal contacts during straight-line walking (IC: recall = 100%, precision = 100%, F1 score= 100%; FC: recall = 100%, precision = 100%, F1 score = 100%), slalom walking (IC: recall = 100%,precision 99%, F1 score =100%; FC: recall = 100%, precision 99%, F1 score =100%), and turning (IC:recall 85%, precision 95%, F1 score 91%; FC: recall 84%, precision 95%, F1 score 89%).Conclusions: Shank-mounted IMUs can be used to detect gait events during straight-line walking, slalomwalking and turning. However, more false events were observed during turning and more events were missedduring turning. For use in daily life we recommend identifying turning before extracting temporal gaitparameters from identied gait events.