Objectives: Chronic inflammatory diseases, including diabetes and cardiovascular disease, are heterogeneous and often co-morbid, with increasing global prevalence. Uncontrolled type 2 diabetes (T2D) can result in severe inflammatory complications. As neutrophils are essential to inflammation, we conducted RNA-seq transcriptomic analyses to investigate the association between neutrophil gene expression and T2D phenotype. Further, as specialized pro-resolving lipid mediators, including resolvin E1 (RvE1), can actively resolve inflammation, we further surveyed the impact of RvE1 on isolated neutrophils. Methods: Cell isolation and RNA-seq analysis of neutrophils from N=11 T2D and N=7 healthy individuals with available clinical data was conducted. Additionally, cultured neutrophils (N=3 T2D, N=3 healthy) were perturbed with increasing RvE1 doses (0nM, 1nM, 10nM, or 100nM) prior to RNA-seq. Data was evaluated through a bioinformatics pipeline including pathway analysis and post hoc false-discovery rate (FDR)-correction. Results: We observed significant differential expression of 50 genes between T2D and healthy neutrophils (p<0.05), including decreased T2D gene expression in inflammatory- and lipid-related genes SLC9A4, NECTIN2 and PLPP3 (p<0.003). RvE1 treatment induced dose-dependent differential gene expression (uncorrected p<0.05) across groups, including 59 healthy and 216 T2D neutrophil genes. Comparing T2D to healthy neutrophils, 1097 genes were differentially expressed across RvE1 doses, including two significant genes, LILRB5 and AKR1C1 , involved in inflammation (p<0.05). Conclusions: Inflammatory- and lipid-related genes were differentially expressed between T2D and healthy neutrophils, and RvE1 dose-dependently modified gene expression in both groups. Unraveling the mechanisms regulating abnormalities in diabetic neutrophil responses could lead to better diagnostics and therapeutics targeting inflammation and inflammation resolution.