It is known that disturbances reduce tracking accuracy and control effect. To address these issues, in this paper, the Integral Adaptive Improved Integral Backstepping Sliding Mode Control (IAIIBSMC) method for position control of the quadrotor with uncertain disturbances, is proposed. Integrals are introduced into the adaptive reaching law and are extended to the control of virtual variables based on integral backstepping control, enhancing the system's anti-disturbance performance. The final combination with Sliding Mode Control (SMC) further improves system performance. Compared to the traditional Adaptive Integral Backstepping Control (AIBC), the proposed IAIIBSMC demonstrates superior tracking control, faster response, stronger anti-interference ability, and smaller overshoot. Experimental comparisons of different control methods and disturbances during fixed-point hovering and trajectory tracking show that the IAIIBSMC achieves better control. Specifically, the maximum position tracking error using IAIIBSMC is approximately 0.191 m, 22.04% lower than that of the AIBC. The steady-state error of IAIIBSMC is about 3 mm, which is negligible within the allowable range. These results validate the effectiveness and superiority of the proposed controller in achieving precise control under various disturbance conditions.