Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Reduction in both spontaneous and stimulated GH secretion in obesity has been clearly demonstrated. Mild hyperactivity of hypothalamus-pituitary-adrenal (HPA) axis has been also reported. Glucagon, at least after im administration, induces clear increase in either GH or ACTH and F levels but its effect on somatotroph and corticotroph secretion in obesity has never been studied. In 7 patients with abdominal obesity (OB, aged 24-42 yr, BMI: 29.1-43.9 kg/m2, waist/hip ratio [WHR]: 0.86-1.00) we studied the GH, ACTH and F responses to the im administration of glucagon (0.017 mg/kg at 0 min). The results in OB were compared with those in a group of 6 age-matched controls normal subjects (Ns aged 26-32 yr, BMI 19.7-22.5 kg/m2). In Ns glucagon administration induced clear increase in GH (peak vs baseline, mean+/-SE: 11.6+/-3.4 vs 3.3+/-0.7 microg/l, p<0.02), and ACTH (52.9+/-15.2 vs 19.0+/-1.5 pg/ml, p<0.02) levels which peaked at +150 and +165 min, respectively. Increase in F levels (222.3+/-23.8 vs 158.3+/-7.0 ng/ml, p<0.05) was also recorded but peaked at +180 min. In OB glucagon administration induced GH response (7.4+/-2.3 vs 0.8+/-0.6 microg/l) lower (p<0.05) than that recorded in Ns; when the GH responses were evaluated by co-variance analysis, a significant difference between the 2 groups was recorded in term of peaks but not of AUCs. On the other hand, the ACTH response to glucagon in OB was higher than that in Ns (11452.6+/-2447.7 vs 4892.2+/-719.4 pg/ml x min, p<0.05). The F response to glucagon in OB and Ns was, however, similar (24057.9+/-4109.1 vs 29835.9+/-1566.0 ng/ml x min). In conclusion, this study demonstrates that in obese patients the im administration of glucagon elicits blunted GH response but exaggerated ACTH increase which is uncoupled with the adrenal response. These findings agree with the existence of concomitant GH insufficiency and altered corticotroph function in obesity.
Reduction in both spontaneous and stimulated GH secretion in obesity has been clearly demonstrated. Mild hyperactivity of hypothalamus-pituitary-adrenal (HPA) axis has been also reported. Glucagon, at least after im administration, induces clear increase in either GH or ACTH and F levels but its effect on somatotroph and corticotroph secretion in obesity has never been studied. In 7 patients with abdominal obesity (OB, aged 24-42 yr, BMI: 29.1-43.9 kg/m2, waist/hip ratio [WHR]: 0.86-1.00) we studied the GH, ACTH and F responses to the im administration of glucagon (0.017 mg/kg at 0 min). The results in OB were compared with those in a group of 6 age-matched controls normal subjects (Ns aged 26-32 yr, BMI 19.7-22.5 kg/m2). In Ns glucagon administration induced clear increase in GH (peak vs baseline, mean+/-SE: 11.6+/-3.4 vs 3.3+/-0.7 microg/l, p<0.02), and ACTH (52.9+/-15.2 vs 19.0+/-1.5 pg/ml, p<0.02) levels which peaked at +150 and +165 min, respectively. Increase in F levels (222.3+/-23.8 vs 158.3+/-7.0 ng/ml, p<0.05) was also recorded but peaked at +180 min. In OB glucagon administration induced GH response (7.4+/-2.3 vs 0.8+/-0.6 microg/l) lower (p<0.05) than that recorded in Ns; when the GH responses were evaluated by co-variance analysis, a significant difference between the 2 groups was recorded in term of peaks but not of AUCs. On the other hand, the ACTH response to glucagon in OB was higher than that in Ns (11452.6+/-2447.7 vs 4892.2+/-719.4 pg/ml x min, p<0.05). The F response to glucagon in OB and Ns was, however, similar (24057.9+/-4109.1 vs 29835.9+/-1566.0 ng/ml x min). In conclusion, this study demonstrates that in obese patients the im administration of glucagon elicits blunted GH response but exaggerated ACTH increase which is uncoupled with the adrenal response. These findings agree with the existence of concomitant GH insufficiency and altered corticotroph function in obesity.
It is widely accepted that glucagon stimulates GH, ACTH and cortisol release in humans, though the mechanisms underlying these effects are unclear. Aim of the present study was to evaluate the stimulatory effect of intramuscolar (i.m.) and intravenous (i.v.) glucagon (GLU) administration on ACTH, cortisol (F) and GH release in normal adult subjects and to compare its effect on hypothalamo-pituitary adrenal (HPA) axis with that of hCRH. To this goal, in 6 normal young women (26-32 yrs, 50-58 kg) we studied the ACTH and F responses to either i.m. or i.v. GLU (1 mg, approximately 0.017 mg/kg in subjects of 54.1 +/- 1.6 kg) administration as well as to i.v. hCRH (2.0 micrograms/kg) or placebo administration. The GH and glucose variations after GLU administration were also studied. I.v. GLU did not modify the spontaneous decrease of ACTH and cortisol levels observed after placebo. Conversely, i.m. GLU elicited clear-cut ACTH and F responses (peak vs baseline, mean +/- SEM: 53.0 +/- 15.2 vs 19.0 +/- 1.5 pg/ml, p < 0.05 and 222.3 +/- 23.8 vs 158.3 +/- 7.0 micrograms/l, p < 0.05) which were higher than those recorded after hCRH (28.1 +/- 4.6 vs 17.4 +/- 3.1 pg/ml, p < 0.02 and 182.7 +/- 22.8 vs 114.8 +/- 12.3 micrograms/l p < 0.02), though this difference did not attain statistical significance. Also GH rise was recorded after i.m. but not after i.v. GLU administration (11.6 +/- 3.4 vs 3.3 +/- 0.7 micrograms/l, p < 0.05). Thirty min after both i.v. and i.m. GLU administration glucose levels showed a similar increase followed by similar decrease. The intramuscular administration of GLU induced negligible side-effects in some subject (mild and transient nausea) which, on the contrary, were clear in all subjects after its intravenous administration (nausea, vomiting, tachycardia). In conclusion, glucagon "per se" is not an ACTH, cortisol and GH secretagogue. After intramuscular administration glucagon is a stimulus of HPA axis at least as effective as hCRH. The mechanisms underlying the ACTH, cortisol and GH responses to i.m. glucagon unlikely include glucose variations or stress.
Objective: It is known that glucagon administration elicits ACTH and cortisol responses in humans, although this effect takes place after intramuscular or subcutaneous but not after the intravenous route of administration. The mechanisms underlying this stimulatory effect on corticotroph secretion are unknown but they are unrelated to glucose variations and stress-mediated actions. Design and Methods: To throw further light on the stimulatory effect of i.m. glucagon on the pituitary± adrenal axis, using six normal young female volunteers (26±32 years, body mass index 19.7±22.5 kg/m 2 ) we studied the interaction between glucagon (GLU; 0.017 mg/kg i.m.) and human corticotropinreleasing hormone (hCRH; 2.0 mg/kg i.v.) or vasopressin (AVP; 0.17 U/kg i.m.). The interactions between hCRH and AVP on the hypothalamo±pituitary±adrenal (HPA) axis and the GH response to GLU alone or combined with hCRH or AVP were also studied. Results: GLU i.m. administration elicited a clear increase in ACTH (peak vs baseline, means 6 S.E.M.: 11.6 6 3.3 vs 4.2 6 0.3 pmol/l, P < 0.05), cortisol (613.5 6 65.6 vs 436.9 6 19.3 nmol/l, P < 0.05) and GH levels (11.6 6 3.4 vs 3.3 6 0.7 mg/l, P < 0.05). The ACTH response to GLU (area under the curve: 426.4 6 80.9 pmol/l per 120 min) was higher than that to AVP (206.3 6 38.8 pmol/l per 120 min, P < 0.02) and that to hCRH (299.8 6 39.8 pmol/l per 120 min) although this latter difference did not attain statistical signi®cance. The GLU-induced cortisol response (28 336.9 6 2430.7 nmol/l per 120 min) was similar to those after hCRH (24 099.2 6 2075.2 nmol/l per 120 min) and AVP (21 808.7 6 1948.2 nmol/l per 120 min). GLU and hCRH had an additive effect on ACTH (964.9 6 106.6 pmol/l per 120 min, P < 0.02) and a less than additive effect on cortisol levels (35 542.5 6 2720.2 nmol/l per 120 min). Similarly, GLU and AVP had an additive effect on ACTH (825.6 6 139.6 pmol/l per 120 min, P < 0.02) and an effect less than additive on cortisol levels (33 059.2 6 1965.3 nmol/l per 120 min). The effects of GLU co-administered with hCRH or AVP were similar to those of the combined administration of hCRH and AVP on ACTH (906.0 6 152.7 pmol/l per 120 min) and cortisol (34 383.5 6 1669.2 nmol/l per 120 min) levels. The GH response to GLU was not modi®ed by hCRH or AVP. Conclusions: These results show that i.m. glucagon administration is a provocative stimulus of ACTH and cortisol secretion, at least as potent as hCRH and AVP. The ACTH-releasing effect of i.m. glucagon is not mediated by selective CRH or AVP stimulation but the possibility that both neurohormones play a role could be hypothesized. European Journal of Endocrinology 143 99±104
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.