2015
DOI: 10.3390/rs70810607
|View full text |Cite
|
Sign up to set email alerts
|

Aboveground-Biomass Estimation of a Complex Tropical Forest in India Using Lidar

Abstract: Light Detection and Ranging (Lidar) is a state of the art technology to assess forest aboveground biomass (AGB). To date, methods developed to relate Lidar metrics with forest parameters were built upon the vertical component of the data. In multi-layered tropical forests, signal penetration might be restricted, limiting the efficiency of these methods. A potential way for improving AGB models in such forests would be to combine traditional approaches by descriptors of the horizontal canopy structure. We asses… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
7
0
2

Year Published

2016
2016
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 25 publications
(9 citation statements)
references
References 56 publications
0
7
0
2
Order By: Relevance
“…En el caso de la SMSP, la altura media y dos percentiles bajos (P20 y P25, 4.79 m -5.32 m) fueron los que correlacionaron mejor con la biomasa de este tipo de selva, lo cual es consistente con lo indicado por Véga et al (2015). En el estudio de d'Oliveira, Reutebuch, McGaughey y Andersen (2012), realizado con el propósito de estimar la biomasa aérea en un bosque tropical en Brasil, los autores señalaron que el P25 y la varianza de la altura fueron las mejores variables explicativas de los modelos.…”
Section: Discussionunclassified
See 1 more Smart Citation
“…En el caso de la SMSP, la altura media y dos percentiles bajos (P20 y P25, 4.79 m -5.32 m) fueron los que correlacionaron mejor con la biomasa de este tipo de selva, lo cual es consistente con lo indicado por Véga et al (2015). En el estudio de d'Oliveira, Reutebuch, McGaughey y Andersen (2012), realizado con el propósito de estimar la biomasa aérea en un bosque tropical en Brasil, los autores señalaron que el P25 y la varianza de la altura fueron las mejores variables explicativas de los modelos.…”
Section: Discussionunclassified
“…No obstante, cuando se comparan los resultados de este trabajo con estudios similares de estimación de biomasa aérea en bosques tropicales existen diferencias notables. Por ejemplo, en un estudio realizado en la amazonia brasileña, d 'Oliveira et al (2012) lograron explicar la varianza hasta 72% (RMSE = 40.2 Mg ha -1 ); mientras que Véga et al (2015) estimaron la biomasa aérea en un bosque tropical húmedo perenne en Western Ghats, India, con una R 2 = 0.96 (RMSEvc = 28.83 Mg ha -1 ). Por otro lado, Meyer et al (2013), utilizando sitios de muestreo del mismo tamaño que este estudio (0.04 ha), en un bosque tropical húmedo, hallaron una R 2 de 0.19 (RMSE = 184.6 Mg ha -1 ) y 0.28 (RMSE = 173.8 Mg ha -1 ) para dos tipos de sensores LiDAR, respectivamente.…”
Section: Discussionunclassified
“…Tropical forests structural heterogeneity is driven by a combination of processes: underlying topographic structure and canopy structure [54]. De-coupling the two processes to gain a better understanding of variations in canopy structure alone was considered by analysis of wavelet variance and wavelet co-variance.…”
Section: Discussionmentioning
confidence: 99%
“…Canopy structure (roughness) measures derived from 3D datasets can provide information on landscape disturbance and recovery [25] but can be affected by environmental factors [53] such as the underlying topography especially in steep terrain [54]. Since the transect is characterized by low-lying undulating terrain (52.7˘3.2 m) and often the presence of mild slopes (12.1˝˘10˝) and at higher elevation (81.4˘11.2 m) and slopes (12˝˘4.3˝) in AG and MS plots (elevation: 64.9˘21.4 m, slopes: 11.9˝˘6.2˝), understanding of topographic structure is important to gain a better insight on the processes that play a role and the extent to which they influence the 3D information provided by LiDAR and InSAR.…”
Section: Lidar and Tandem-x Textural Correlation Anaysis To Assess Comentioning
confidence: 99%
See 1 more Smart Citation