Weapons depend largely on the barrel. Gunpowder combustion converts chemical energy into thermal and mechanical energy. Barrels give projectiles initial speed and flight direction, and helical grooves require fast spinning for stability while moving toward the target. Due of barrel exposure to heat, high pressures, gunpowder vapors, and external impacts, this weapon element needs extensive investigation. The study discusses carburizing for surface modification in high-pressure circumstances to improve gun barrel interior line tribology. Carburizing has been detected at a depth of 960 μm from the surface, as revealed by light-optical microscope images. The microhardness test has been performed on the sample's cross section, which has a maximal hardness of 650 ± 10 HV0.05 close to the surface and 250 ± 5 HV0.05 close to the interface. At room temperature (RT), this study looked at how the carburizing process affects the impact-sliding wear performance of 14NiCr14 steel, which is widely used in the barrel extensions of guns under complex loading conditions. A series of impact-sliding wear experiments were conducted on 10 mm-diameter bearing steel balls made of 52100-grade steel, for a total of 4297 loading cycles. A 2-D contact profilometer and a light optical microscope (LOM) then examined the wear tracks that had formed on the samples. The carburized steel caused a decrease in the wear rate at the impact and sliding zones of the wear track.