4-Methyl-5-(2-pyrazinyl)-1,2-dithiole-3-thione (oltipraz), a prototype drug candidate containing a 1,2-dithiole-3-thione moiety, has been widely studied as a cancer chemopreventive agent. Oltipraz and other novel 1,2-dithiole-3-thione congeners have the capability to prevent insulin resistance via AMP-activated protein kinase (AMPK) activation. Arachidonic acid (AA, a proinflammatory fatty acid) exerts a deleterious effect on mitochondria and promotes reactive oxygen species (ROS) production. This study investigated whether AA alone or in combination with iron (catalyst of autooxidation) causes ROS-mediated mitochondrial impairment, and if so, whether oltipraz and synthetic 1,2-dithiole-3-thiones protect mitochondria and cells against excess ROS produced by AA ϩ iron. Oltipraz treatment effectively inhibited mitochondrial permeability transition promoted by AA ϩ iron in HepG2 cells, thereby protecting cells from ROS-induced apoptosis. Oltipraz was found to attenuate apoptosis induced by rotenone (complex I inhibitor), but not that by antimycin A (complex III inhibitor), suggesting that the inhibition of AA-induced apoptosis by oltipraz might be associated with the electron transport system. AMPK activation by oltipraz contributed to cell survival, which was supported by the reversal of oltipraz's restoration of mitochondrial membrane potential by concomitant treatment of compound C. By the same token, an AMPK activator inhibited AA ϩ iron-induced mitochondrial permeability transition with an increase in cell viability. Moreover, new 1,2-dithiole-3-thiones with the capability of AMPK activation protected cells from mitochondrial permeability transition and ROS overproduction induced by AA ϩ iron. Our results demonstrate that oltipraz and new 1,2-dithiole-3-thiones are capable of protecting cells from AA ϩ iron-induced ROS production and mitochondrial dysfunction, which may be associated with AMPK activation.4-Methyl-5-(2-pyrazinyl)-1,2-dithiole-3-thione (oltipraz), a prototype drug candidate containing a 1,2-dithiole-3-thione moiety, has been widely studied as a cancer chemopreventive agent (Bolton et al., 1993;Jacobson et al., 1997;Wang et al., 1999;Kang et al., 2003). Oltipraz has also been studied in the treatment of liver cirrhosis (Kang et al., 2002). Studies from this laboratory and others indicated that the cancer chemopreventive properties of oltipraz might be associated with the phosphatidylinositol 3-kinase-dependent activation of CCAAT/ enhancer binding protein and the consequent changes in target gene transactivation (e.g., phase II antioxidant enzymes) (Kensler, 1997;Kang et al., 2003). More recently, oltipraz and other novel 1,2-dithiole-3-thione congeners were found to have the capability to prevent insulin resistance induced by tumor necrosis factor-␣ (TNF␣) (Bae et al., 2007), a cytokine that promotes the production of reactive oxygen species (ROS) (Xue et al., 2005). The signaling pathway responsible for the restoration of insulin sensitivity may involve AMPactivated protein kinase (AMP...