Fluorescence resonance energy transfer (FRET), time-resolved fluorescence and anisotropy decays were determined in large unilamellar vesicles (LUVs) of egg phosphatidylcholine with the FRET pair N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dipalmitoyl-sn-glycero-3-phospho-ethanolamine as donor and lissamine rhodamine B 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine as acceptor, using 2-ps pulses from a Ti:sapphire laser on LUVs with incorporated plant growth regulators: triacontanol (TRIA) and jasmonic acid (JA). FRET efficiency, energy transfer rate, rotation correlation time, microviscosity, and diffusion coefficient of lateral diffusion of lipids were calculated from these results. It was observed that TRIA and JA differentially modulated all parameters studied. The effect of JA in such modulations was always partially reversed by TRIA. Also, the generalized polarization of laurdan fluorescence indicated that JA enhances the degree of hydration in lipid bilayers to a larger extent than does TRIA. Solid-state (31)P magic-angle spinning nuclear magnetic resonance spectra of LUVs showed two chemical shifts, at 0.009 and -11.988 ppm, at low temperatures (20 degrees C), while at increasing temperatures (20-60 degrees C) only one (at -11.988 ppm) was prominent and the other (0.009 ppm) gradually became obscure. However, LUVs with TRIA exhibited only one of the shifts at 0.353 ppm even at lower temperatures and JA did not affect the chemical shifts.