Most electromagnetic phenomena pertaining to metamaterials are observed at the resonance positions. In this review, we have collated and analyze the most prevalent forms of resonance-based phenomena observed in metamaterials to serve as a ready reference for future researchers. Our focus will be on metamaterials operating at the terahertz frequency domain. Starting with the origin and evolution of fundamental LC resonances in metamaterials, we would explain occurrence of typical even and odd higher order resonance modes. We have also discussed Fano resonances in asymmetric gap resonators-based metamaterials. Further, quantum phenomena analogues, such as, electromagnetically induced transparency (EIT) or Plasmon Induced Transparency (PIT), which can significantly influence the metamaterials resonances are also discussed. Thereafter, origins to ultra-sharp resonances in toroidal metamaterials, along with chiral metamaterials and resonance mode hybridization effects in the context of terahertz metamaterials are described. This review should be useful for undertaking.