In this work, we revisit the temporal stability of slip channel flow. Lauga & Cossu (Phys. Fluids 17, 088106 (2005)) and Min & Kim (Phys. Fluids 17, 108106 (2005)) have investigated both modal stability and non-normality of slip channel flow and concluded that the velocity slip greatly suppresses linear instability and only modestly affects the nonnormality. Here we study the stability of channel flow with streamwise and spanwise slip separately as two limiting cases of anisotropic slip and explore a broader range of slip length than previous studies did. We find that, with sufficiently large slip, both streamwise and spanwise slip trigger three-dimensional leading instabilities. Overall, the critical Reynolds number is only slightly increased by streamwise slip, whereas it can be greatly decreased by spanwise slip. Streamwise slip suppresses the non-modal transient growth, whereas spanwise slip enlarges the non-modal growth although it does not affect the base flow. Interestingly, as the spanwise slip length increases, the optimal perturbations exhibit flow structures different from the well-known streamwise rolls. However, in the presence of equal slip in both directions, the three-dimensional leading instabilities disappear and the flow is greatly stabilized. The results suggest that earlier instability and larger transient growth can be triggered by introducing anisotropy in the velocity slip.