To investigate the reactions of oxygen atoms with ethene and silane in a crossed-beam condition, we developed a stable, highly intense, and short-pulsed source of atomic oxygen with a transient high-voltage discharge. Mixtures of O(2) and He served as discharge media. Utilizing a crossed molecular-beam apparatus and direct vacuum-ultraviolet ionization, we measured the temporal profiles of oxygen atoms and the time-of-flight spectra of reaction products. With O(2) 3% seeded in He as a discharge medium, oxygen atoms might have a full width as small as 13.5 micros at half maximum at a location 193 mm downstream from the discharge region. Most population of oxygen atoms is in the ground state (3)P but some in the first excited state (1)D, depending on the concentration of precursor O(2). This discharge device analogously generates carbon, nitrogen, and fluorine atoms from precursors CO, N(2), and F(2), respectively.