Post-translational modifications (PTMs) greatly expand the structures and functions of proteins in nature 1,2 . Although synthetic protein functionalization strategies allow mimicry of PTMs 3,4 , as well as formation of unnatural protein variants with diverse potential functions, including drug carrying 5 , tracking, imaging 6 and partner crosslinking 7 , the range of functional groups that can be introduced remains limited. Here we describe the visible-light-driven installation of side chains at dehydroalanine residues in proteins through the formation of carbon radicals that allow C-C bond formation in water. Control of the reaction redox allows site-selective modification with good conversion efficiencies and reduced protein damage. In situ generation of boronic acid catechol ester derivatives generates RH2C • radicals that form the native (β-CH2-γ-CH2) linkage of natural residues and PTMs, whereas in situ potentiation of pyridylsulfonyl derivatives by Fe(II) generates RF2C • radicals that form equivalent β-CH2-γ-CF2 linkages bearing difluoromethylene labels. These reactions are chemically tolerant and incorporate a wide range of functionalities (more than 50 unique residues/side chains) into diverse protein scaffolds and sites. Initiation can be applied chemoselectively in the presence of sensitive groups in the radical precursors, enabling installation of previously incompatible side chains. The resulting protein function and reactivity are used to install radical precursors for homolytic on-protein radical